

BIM Solutions

https://www.bimsolutions.com.ua/

Наша головна мета - допомогти знайти найбільш ефективний підхід до вирішення задач будь-якої складності.

BIM Solutions пропонує програмне забезпечення і управління навчанням для компаній, які хочуть працювати швидко і ефективно, не витрачаючи зайві ресурси.

BIM Solutions Ukraine пропонує до уваги передові розрахункові комплекси:

/	
Dlubal	
RFEM 5	Dlubal RFEM

RFEM це повноцінна 3D-програма для МСЕ, що дозволяє інженерам дотриматися всіх вимог сучасного будівництва. Ефективна технологія введення даних і інтуїтивно зрозуміле управління полегшують моделювання як простих, так і складних конструкцій.

Використання.

Перші кроки.

<u>Вебінари</u>

Навчання для студентів.

<u>IDEA StatiCa – інженерне програмне забезпечення для розрахунку та перевірки за нормами вузлів,</u> <u>перерізів елементів і інших деталей будівельних конструкцій.</u>

Перші кроки

<u>Вебінари</u>

<u>Для студентів.</u>

Версия Февраль 2012

Программа

RFEM 5

Вводный пример

Все права, включая права на перевод, защищены.

Без письменного согласия компании DLUBAL SOFTWARE не разрешается распространять каким-либо способом данное описание программы и отдельные его части.

© Dlubal Software GmbH Am Zellweg 2 D-93464 Tiefenbach

+49 (0) 9673 9203-0
+49 (0) 9673 9203-51
info@dlubal.com
www.dlubal.ru

Содержание

	Содержание Стра	ница		Содержание Стран	ица
1.	Введение	4	5.2	Загружение 2: Временная нагрузка, участок 1	31
2.	Система и нагрузки	5	5.3	Загружение 3: Временная	•
2.1	Схематический чертеж системь	ı 5		нагрузка, участок 2	33
2.2	Материалы, толщина и сечения	5	5.3.1	Нагрузка на поверхность	33
2.3	Нагрузка	6	5.3.2	Линейно-распределенная	0.4
3.	Создание модели	7	E 4		34 25
3.1	Запуск программы RFEM	7	5.4 5.5	Загружение 4: песовершенства	35 27
3.2	Создание модели	7	5.5	Проверка загружении	37
4.	Данные о конструкции	9	6.	Сочетания нагрузок	38
4.1	Регулировка рабочего окна и		6.1	Создание сочетаний нагрузок	38
	сетки	9	6.2	Создание расчетных сочетаний	42
4.2	Создание поверхностей	11	7.	Расчет	43
4.2.1	Первая прямоугольная	44	7.1	Проверка введенных данных	43
400		11	7.2	Создание сетки КЭ	44
4.2.2	поверхность	12	7.3	Расчет конструкции	44
4.2.3	Соединительные линии	14	8.	Результаты	45
4.3	Создание стержней	15	8.1	Графические результаты	45
4.3.1	Балки перекрытия	15	8.2	Таблицы результатов	47
4.3.2	Колонны	20	8.3	Фильтр результатов	49
4.4	Расположение опор	24	8.3.1	Видимости	49
4.5	Соединение стержня с		8.3.2	Результаты по обьектам	50
	разъединением и эксцентриситетом	26	8.4	Отображение диаграммы результатов	52
4.5.1	Шарнир	26	9.	Документация	53
4.5.2	Эксцентриситет стержня	27	9.1	Создание протокола	
4.6	Проверка введенных данных	28		результатов	53
5.	Нагрузки	29	9.2	Настройка протокола результатов	54
5.1	Загружение 1: Собственный вес и отделка	29	9.3	Вставка графических объектов	55
5.1.1	Собственный вес	30	10		E0
5.1.2	Конструкция перекрытия	30	10.	Заключение	50

1. Введение

На основе данного вводного примера мы хотим познакомить вас с наиболее важными особенностями программы RFEM. Часто существует несколько вариантов действий для достижения поставленных вами целей. В зависимости от ситуации и ваших предпочтений, вы можете в целях обучения поработать в программе, чтобы узнать больше о её возможностях. На этом простом примере мы хотим предложить вам протестировать полезные функций программы RFEM.

Вы будете моделировать плиту перекрытия, поддерживаемую колоннами включая две балки перекрытия. Затем вы рассчитаете конструкцию, в соответствии с линейно-статическим анализом и анализом второго порядка, принимая во внимание следующие расчетные варианты нагрузки: собственный вес с отделкой, временную нагрузку и отклонение.

Вы сможете ввести, рассчитать и оценить вводный пример даже учитывая ограничения демо-версии программы - не более 2 поверхностей и 12 стержней. Таким образом, как вы понимаете, модель соответствует требованиям реальных строительных проектов только до некоторой степени. С помощью представленных возможностей мы хотим показать, какими способами можно определить конструктивные объекты и объекты нагрузки.

Обратите внимание, что в демо-версии вы не сможете сохранить данные модели. Поэтому мы рекомендуем запастись необходимым временем для того, чтобы полностью выполнить пример (примерно около часа) и опробовать функции программы спокойно, без стресса. Тем не менее, вы можете прервать работу над моделью в демо-версии при условии, что вы не закрыли программу RFEM: Если вы хотите сделать перерыв - не выключайте компьютер, а просто переведите его в режим ожидания.

Проще всего вводить данные с помощью двух экранов, или же вы можете распечатать описание, чтобы не переходить постоянно между окнами с PDF файлом и таблицей ввода RFEM.

Описываемые в тексте руководства кнопки представлены в квадратных скобках, как, например, [Применить]. Одновременно они показаны на полях слева. В дополнение, **выражения**, используемые в диалоговых окнах, таблицах и меню выделены *курсивом* для объяснения поясняющей информации. Обязательный ввод обозначен жирным шрифтом.

Вы можете найти описание функций программы в руководстве по программе RFEM, которое можно загрузить с веб-сайта Dlubal www.dlubal.ru/skachatinstrukcii.aspx.

Файл **RFEM-Example-06.rf5**, содержащий данные о модели для следующего примера, можно найти в проекте *Примеры*, который был автоматически создан во время установки. Тем не менее, для первого знакомства с RFEM, мы рекомендуем ввести модель вручную. Если у вас нет для этого достаточного количества времени, вы также можете посмотреть обучающее видео на нашем веб-сайте www.dlubal.ru/video-rfem.aspx.

2. Конструкция и нагрузки

2.1 Схема конструкции

Рис. 2.1: Схема конструкции

Железобетонное перекрытие состоит из двух сплошных плит перекрытия с балкой перекрытия, изготовленной из железобетона и другой балкой перекрытия, изготовленной из стали. Конструкция опирается на колонны, которые устойчивы на изгиб и интегрированы в плиту.

Как упомянуто выше, модель представляет собой "абстрактную" конструкцию, которая может быть также рассчитана в демо-версии, функции которой ограничены максимально двумя поверхностями и двенадцатью стержнями.

2.2 Материалы, толщина и сечения

Вы будете использовать бетон С30/37 и сталь S 235 в качестве материалов.

Толщина пола - 20 см. Бетонные колонны и балка перекрытия состоят из квадратных сечений с длиной стороны 30 см. Для стальной балки используйте сечение IPE 450.

2.3 Нагрузки

Загружение 1: собственный вес и отделка (постоянная нагрузка)

Первая нагрузка состоит из собственного веса конструкции вместе с конструкцией пола и прилагается с 0.75 кH/м². Нет необходимости рассчитывать собственный вес вручную. Программа RFEM рассчитает вес автоматически на основе заданных материалов, толщины поверхности и сечений.

Загружение 2: временная нагрузка, участок 1

Поверхность перекрытия представляет внутреннюю площадь категории A2 с временной нагрузкой 1,5 кH/м². Нагрузка применяется в двух различных расчетных вариантах нагрузки для того, чтобы определить эффект влияния непрерывности.

Загружение 3: временная нагрузка, участок 2

Временная нагрузка 1.5 кН/м² применятся также ко второму участку. Кроме того, вертикально действующая линейная нагрузка 5,0 кН/м, учитывается на краю перекрытия, представляя, таким образом, нагрузку, обусловленную конструкцией балкона.

Загружения 4: несовершенства

Часто необходимо принимать во внимание несовершенства, например, в соответствии с Еврокодом 2. Наклоны и предварительные изгибы учитываются в отдельном загружении. Таким образом, можно указать отдельные частичные коэффициенты надежности, при сочетании нагрузки с другими воздействиями.

Наклон упрощен для всех колонн, на основе допущения, что $\phi_0 = 1/200$ в направлении обратном Y. В соответствии с Еврокодом 2 нет необходимости рассматривать предварительные изгибы.

3. Создание модели

3.1 Запуск программы RFEM

Чтобы запустить программу RFEM на панели задач,

выберите Начало, укажите на Все программы и Dlubal, а затем выберите Dlubal RFEM 5.xx

или дважды щелкните на значке Dlubal RFEM 5.xx на рабочем столе компьютера.

3.2 Создание модели

Откроется рабочее окно программы RFEM с диалоговым окном, которое показано ниже. Здесь нам необходимо ввести исходные данные для новой модели.

Если программа RFEM уже отображает модель, закройте ее с помощью **Закрыть** в меню **Файл.** Затем откройте диалоговое окно *Основные данные* с пункта меню **Новый** в меню **Файл.**

(panna na Kononnax			
ие			
tures			
B			
oles			
Классификация загружений и сочетаний			
По норме:			
Отсутств.			
Автоматически создать сочетания			
 Очетания нагрузок 			
 Расчетные сочетания (только для линейного расчета) 			
Шаблон			
🔲 Открыть модель-шаблон:			
- 3			
- 🖻			

Рис. 3.1: Диалоговое окно Новая модель - основные данные

Напечатайте **Вводный пример** в поле ввода *Наименование модели*. Справа, введите **Плита перекрытия на колоннах** в поле ввода *Наименование*. Вы всегда должны вводить *Наименование модели*, так как оно определяет название файла программы RFEM. Поле *Наименование*, при желании, можно не заполнять.

В поле ввода *Наименование проекта*, необходимо выбрать **Примеры** из списка, в случае если наименование проекта не было указано по умолчанию. *Наименование* проекта и соответствующая *Папка* отображаются автоматически.

В части диалогового окна *Тип модели*, предустановленна опция **3D**. Данная настройка позволяет произвести пространственное моделирование. Также оставьте настройку по умолчанию **Вниз** для *Положительной ориентации общей оси Z*.

Таким образом, вы определили основные данные для модели. Диалоговое окно можно закрыть с помощью кнопки [ОК].

4. Данные о конструкции

4.1 Регулировка рабочего окна и сетки

На экране изображено пустое рабочее окно программы RFEM.

Вид

Сначала, нажмите кнопку [Развернуть] в заголовке окна, чтобы развернуть рабочее окно на весь экран. В рабочей области изображены оси координат с глобальными направлениями X, Y и Z.

Для изменения положения осей координат, нажмите кнопку [Переместить, Приблизить, Повернуть] на панели инструментов выше. Указатель превратится в руку-указатель. Теперь вы можете расположить рабочую область в желаемом месте на экране, перемещая указатель и одновременно удерживая левую кнопку мыши.

Кроме того, можно использовать руку-указатель, чтобы увеличить или повернуть изображение:

- Приближение: Переместите указатель, удерживая кнопку [Shift].
- Поворот: Переместите указатель, удерживая кнопку [Ctrl].

Существует несколько способов, чтобы выйти из данной функции:

- Нажмите кнопку ещё раз.
- Нажмите кнопку [Esc] на клавиатуре.
- Щелкните правой кнопкой мыши в рабочей области.

Функции мыши

Функции мыши соответствуют общепринятым стандартам приложений Windows. Чтобы выбрать объект для дальнейшего редактирования, щелкните по нему один раз **левой** кнопкой мыши. Дважды щелкните на объекте, если вы хотите открыть соответствующее диалоговое окно для его редактирования.

Если кликнуть на объект **правой** кнопкой мыши, появится контекстное меню с командами и функциями, которые соответствуют объекту.

Для того чтобы изменить размер отображаемой модели, воспользуйтесь колесиком мыши. Удерживая нажатым колесико мыши, вы можете напрямую перемещать модель. Нажимая дополнительно на клавишу [Ctrl], можно вращать конструкцию. Вращение конструкции также можно осуществить с помощью колесика мыши, удерживая при этом правую клавишу мыши. Символы указателя, изображенные слева, показывают выбранную функцию.

Сетка

Сетка представлена на заднем фоне рабочей области. В диалоговом окне *Рабочая плоскость и сетка/фиксация*, можно настроить расстояние между точками сетки. Чтобы открыть диалоговое окно, воспользуйтесь кнопкой [Параметры рабочей плоскости].

абочая плоскость	Начало рабочей плоскости
Система координат: Стандартный • 🛅 📰	Узел №:
ХZ Фиксация объекта Направл Изобразить Тип	Z: 0.000 (м)
Решетка ♥ Решетка ♥ Фиксировать [пкс.] Расстояние: 10 ÷	Пинамически по размерам модели (+) (-) Направл. 1: 60 ★ 60 ★ 2: 60 ★ 60 ★
	Шаг точек решетки Расст. b: 0.500 (m) h: 0.500 (m) Поворот β: 0.00 (m)
	Шаглиний решетки Номер n1: 10 🚖 n2: 10 🚖

Рис. 4.1: Диалоговое окно Рабочая плоскость и сетка/фиксация

Для ввода данных о точках сетки, очень важно, чтобы были активированы контрольные поля *ФИКСАЦИЯ* и *СЕТКА*. Таким образом, будет видна сетка и точки будут зафиксированы на сетке при щелчках мышью.

Рабочая плоскость

Плоскость XY установлена по умолчанию как рабочая плоскость. При использовании этой настройки все графически введенные объекты будут созданы в горизонтальной плоскости. Эта плоскость не имеет значения при вводе данных в диалоговых окнах или таблицах.

Настройки по умолчанию подходят для нашего примера. Закройте диалоговое окно с помощью кнопки [OK] и начните работу с ввода данных по модели.

ФИКСАЦИЯ СЕТКА

4.2 Создание поверхностей

Сначала можно определить угловые узлы для соединения их с линиями, которые затем вы сможете использовать для создания поверхности перекрытия. Но в данном примере вы будете использовать прямой графический ввод линий и поверхностей.

Вы можете определить потолок как непрерывную поверхность с помощью контуров. Но перекрытие также можно представить с помощью двух прямоугольных поверхностей, которые жестко соединены в общую линию. Второй способ моделирования позволяет легче применять нагрузки на двух участках.

4.2.1 Первая прямоугольная поверхность

Для того чтобы быстро создать прямоугольные плиты,

выберите **Данные о модели** в меню **Вставить**, после этого укажите на **Поверхности**, **Плоскость** и **Графически**, и выберите **Прямоугольник**,

или воспользуйтесь соответствующей кнопкой раскрытия списка для выбора плоских поверхностей. Нажмите кнопку со стрелкой [▼], чтобы открыть выпадающее меню, которое предлагает на выбор геометрии поверхности.

С помощью меню [Прямоугольный] можно напрямую задать плиту. Соответствующие узлы и линии будут созданы автоматически.

После выбора этой функции откроется диалоговое окно Новая прямоугольная поверхность.

1	Тип поверхности Геометрия: Плоскость
Материал	Жесткость: 🔲 Стандартный 🗾 🗸
 Петен С30/37 ЕN 1992-1-1:2004/АС:201 Толщина Постоянная Толщина d: 200.0 → ₩ [мм] Переменная ₩ 	0 Изот ч
KOMMOUTODING	100-0
Комментарии	- G

Рис. 4.2: Диалоговое окно Новая прямоугольная поверхность

Полю *Поверхность* № новой прямоугольной плиты присваивается номер 1. Нет необходимости изменять этот номер.

\$

В качестве *Материала* предустановлен *Бетон С30/37* в соответствии с EN 1992-1-1. Если вы хотите использовать другой материал, необходимо его выбрать с помощью кнопки [Импорт нового материала из базы данных материалов].

Толщина поверхности является *Постоянной*. Вы можете увеличить значение *d* до **200** мм с помощью счетчика или прямого ввода.

Кнопка раскрытия списка для плоских поверхностей

RFEM Вводный пример © 2012 Dlubal Software GmbH

17

В разделе диалогового окна Тип поверхности Жесткость предустановленна как Стандартная.

Закройте диалоговое окно с помощью кнопки [ОК] и начните графический ввод плиты.

Задание поверхности можно упростить, если установить вид в направлении Z (вид сверху) с помощью кнопки, показанной слева. На режим ввода это не повлияет.

Чтобы определить первый угол, щелкните левой кнопкой мыши на **начало** координат (координаты X/Y/Z **0.000/0.000**). Текущие координаты указателя отображаются рядом с сеткой.

После этого необходимо определить противоположный угол плиты, щелкнув на точку сетки с координатами X/Y/Z 6.000/5.000/0.000.

Рис. 4.3: Прямоугольная поверхность 1

Программа RFEM создает четыре узла, четыре линии и одну поверхность.

4.2.2 Вторая прямоугольная поверхность

Так как функция по-прежнему активна, вы можете сразу определить следующую поверхность.

Щелкните на узел **4** с координатами **6.000/0.000**, и потом выберите точки сетки с координатами **10.000/8.000/0.000**.

	°						
						X: 10 Y: 8 Z: 0	.000
						\mathcal{L}^{ϕ}	

Так как вы больше не хотите создавать другие плиты, выйдете из режима ввода, нажав кнопку [Esc]. Также вы можете щелкнуть правой кнопкой мыши где-нибудь в пустой области рабочего окна.

Изобразить нумерации

Если необходимо отобразить нумерацию узлов, линий и поверхностей, щелкните правой кнопкой мыши в пустом пространстве рабочего окна. После этого появится контекстное меню с полезными функциями. Активируйте *Нумерацию*.

	Повторить последнюю команду	Enter
	Изобразить	,
	Пользовательский вид	,
123	Изобразить нумерацию	
2	Изобразить нагрузки И	
•	Изобразить результаты	
s,	Изобразить размеры	
CA.	Изобразить комментарии	
	Изобразить скрытые объекты на задне	м плане
V	Изобразить сплошную/сетчатую модел	ь
9	Закрыть направляющие	
√	Закрыть линии решетки	
B	Активировать функцию перетаскивани	R
۲	Автоматический поворот модели	
ø	Автосоединение линий/стержней	
P	Система координат	
1	Рабочая плоскость, решетка/фиксация	
9	Подробный выбор	
	Цвета в графике по	
	Параметры изображения	

Вы можете использовать вкладку навигатора *Изобразить* для детальной проверки нумерации объектов.

Рис. 4.6: Навигатор Изобразить для нумерации

X

4.2.3 Соединительные линии

При задании второй поверхности, граница была установлена на уже существующей линии, которая представляет собой линию соединения обеих поверхностей. Чтобы быстро её исправить,

выберите Соединить линии/стержни в меню Инструменты

или воспользуйтесь кнопкой панели инструментов, которая изображена слева.

После активации функции соединения, необходимо выделить указателем область по всей вводимой конструкции. Линии будут подогнаны автоматически.

Рис. 4.7: Результат с подогнанными линиями

Закройте режим ввода с помощью кнопки [Esc] или щелкнув правой кнопкой мыши в пустой рабочей области.

4.3 Создание стержней

4.3.1 Балки перекрытия

Укажите свойства стержней для линий 3 и 7, чтобы определить две балки перекрытия.

4.3.1.1 Стальная балка

Диалоговое окно *Редактировать линию* можно открыть с помощью двойного щелчка по линии 7.

Перейдите на вторую вкладку *Стержень*, где выберите флажок с опцией *Возможный* (см. Рис. 4.8). После этого появится диалоговое окно *Новый стержень*.

S SMING SUCHO		Inona Lenca C4	Поворот				
A			поворот				
линия №2 7				→x	Ai		
<u>(</u>					11:14		
Стержень	_			'ż	/x //		
Возможн	ai			RI RI	1/ry		
Новый сте	жень					x	
Общие с	едения Опции	Полезные длины	Изменить ж	есткости			
Стерже	ь № Лин	us Nº		Тип стержня			
1	7		1	Балка	•	1	
			1				
ysen №				Наклон стержня			
7,8				×	TA		
				V* +	Конец		
Поворот	стержня через			2	1 / Manuar		
• Yron	β:	0.00 🔃 [*]		1/1	Bcnoworaten	ьный узел	
⊘ Bono	Norat. No. Rea		1	Начало	у в плоскости з	с-у	
vзел	Dial Dial			A	β /		
Впл	скости () х-у		A	z' t t z	β < 0+		
	0 8-2		U				
Сечение					0		
Вначал	ста					20	
Вконце	ст.: Как начало	стержня			• Импорт	т из базы данны	ых сечений
Шарнир	на конце стержня						
	ст.: Отсутствуе	ет			- 🞦 📼		
В начал					Change (the second sec		

Рис. 4.8: Диалоговое окно Новый стержень

Нет необходимости изменять настройки по умолчанию. Нужно всего лишь создать *Сечение*. Чтобы определить сечение в *Начале стержня*, щелкните на кнопку [Создать новое сечение в начале стержня].

IPE

После этого появится диалоговое окно *Новое сечение*. Нажмите кнопку [IPE] в верхней части диалогового окна. Откроется диалоговое окно *Прокатные профили* - *Двутавры*, в котором можно выбрать раздел **IPE 450** из таблицы профилей IPE (см. Рис. 4.9).

Для прокатных профилей программа RFEM назначает 2 - Сталь 235 в качестве Материала.

	NR Liber	г Наименование сече	ния	
окатные профили - Дутавры			-	
ип сечения	Выбрать		Выбрать	IPE 450 Euronorm 19-57
TITI	Таблица	Производитель/норма	Сечение	
	I IPE	Euronoim 19-57	IPE 80	
0 0 1 :	I HE A	Euronom 53-62	IPE 100	190.0
	I HE B	Euronom 53-62	IPE 120	
2 1	I HE M	Euronom 53-62	IPE 140	
			IPE 160	7 21.0
			IPE 180	
			IPE 200	
3			IPE 220	
			IPE 240	
пьтр			IPE 300	¥
роизводитель / группа норм:			IPE 330	
EN 👻			IPE 360	9.4
			IPE 400	
роизводитель / норма:			IPE 450	
Bce 🔹			IPE 500	
ODMA CRYPHINE			IPE 550	
Rea -			IPE 600	
- DUC -				
римечание к сечению:				
Bce -				
				Материал
				2 - Crans S 235 DIN 18800:1990-11
ј оклионан неправильные. 📷				
Группа любимык				
- 🛅 🔤				IPE 450 Euronom 19-57

Рис. 4.9: Выбор профиля IPE 450

Нажмите [OK], чтобы импортировать характеристики сечения в диалоговое окно Новое сечение.

טטב נבאבחווב	
Цвет Наименование сечения 1 Image: Comparison of the second se	
Карактеристики сечения Поворот Модифицировать	IPE 450 Euronorm 19-57
Характеристики сечения	190.0
Моменты инерции	r harmanaana
Кручение J : 67.10 🜩 [см ⁴]	÷ 210
Изгиб I 33740 00 斗 Гем41	~ 21.0
1680 00 (cm4)	
Площади сечений	
Осевая A: 98.80 🖈 [см²]	4 7
Поперечная ду : 46.39 🚓 [см²]	9.4
A ₂ : 39.82 + [CM ²]	
Наклон главных осей	
Uron α: 0.00 👘 [*]	ž
Общие размеры (для неравномерных температурных нагрузок)	[MIM
Ширина b: 190.0秉 [мм]	🔒 🚰 🎞 💷 🗖
Высота h: 450.0 🖈 [мм]	Материал
	2 CTags S 235 DIN 18800-1990-11
омментарий	

Рис. 4.10: Диалоговое окно Новое сечение с характеристиками сечения

Нажмите [OK] для возврата в первоначальное диалоговое окно *Новый стержень*. Теперь поле ввода *Начало стержня* показывает новое сечение. Закройте диалоговое окно с помощью [OK]. Закройте диалоговое окно *Редактировать линию* также с помощью кнопки [OK]. Стальная балка теперь отображается на краю перекрытия.

4.3.1.2 Тавровые балки

Балка перекрытия под потолком определяется таким же самым способом: Дважды щелкните по линии 3, чтобы открыть диалоговое окно *Редактировать линию*. Во вкладке *Стержень* выберите опцию *Возможный* (см. Рис. 4.8).

Определение сечения

Откроется диалоговое окно *Новый стержень*. Для того, чтобы задать сечение в *Начале стержня*, ещё раз нажмите кнопку [Новый] (см. Рис. 4.8).

В верхней части диалогового окна *Новое сечение*, выберите большую таблицу сечений *REC*. Откроется диалоговое окно *Массивные сечения - Прямоугольное*, в котором будет можно задать ширину *b* и высоту *h* **300** мм.

Рис. 4.11: Диалоговое окно Массивные сечения - Прямоугольное

0

Для сплошных сечений программа RFEM назначает номер 1 - Бетон С30/37 в качестве Материала.

Можно использовать кнопку [Информация], чтобы проверить свойства сечения.

Нажмите [OK], чтобы импортировать характеристики сечения в диалоговое окно Новое сечение.

8

Нажмите [OK] для возврата в первоначальное диалоговое окно *Новый стержень*. Теперь поле ввода *Начало стержня* показывает прямоугольное сечение.

Задание ребра

В программе RFEM балка перекрытия может быть смоделирована с помощью стержня типа *Ребро*. Необходимо всего лишь изменить *Тип стержня* в диалоговом окне *Новый стержень*: Выберите строку *Ребро* из списка.

Общие сведени	я Опции	Полезные длины	Изменить же	сткости	
Стержень №	Ли	ния №		Тип стержня	
2	3		5	Ребро	- 💌
Ysen NR				Балка	-u-
34				Petoo	
5,4				Элемент фермы Элемент фермы (только N) Растяжение	
Поворот стеря	кня через			Сжатие	
• Угол	β:	0.00 💠 ["]		Потеря устойчивости	
Вспомогат. vзел	Nº: BH	утри 👻 👘	1	Канат на блоках Результ. балка	
В плоскост	и: @ x-y x-z		0	Определяемые жесткости Соединение заделка-заделка	
Сечение				Соединение заделка шарнир	
В начале ст.:	2	Прямоугольное 30	0/300 Бетон (Соединение шарнир-заделка Пружина	🔄 🕄
В конце ст.:	Как начал	о стержня		Нулевой	8
Шарнир на кон	це стержня	L.			
В начале ст.:	Отсутству	ет		• 🎦 🗷	4
	0			• 🥱 🗉	

Рис. 4.12: Изменение типа стержня

~

После этого, нажмите на кнопку [Исправить], расположенную вправо от списка, чтобы открыть диалоговое окно Задать или исправить ребро.

Стержень №	
2	
Позиция и организация	bi b2
На стороне поверхности +z	
На стороне поверхности -2	States y
🖱 По центру	
 Задана пользователем через эксцентриситет стержня 	ý z
Полезная ширина - сторона 1	Полезная ширина - сторона 2
	Approximate contraction and the second secon
Ширина b 1 🔘 L/6	Ширина b2: 🔘 L/6
L/8	
© [1]	© [M]
Расположение лебла	
И Направить местнию ось 2 парадлельно м	естной оси 2 поверхности
Комментарий	
	-

Задайте Позицию и организацию ребра на стороне поверхности +z. Она является нижней частью плиты перекрытия.

Для *Полезной ширины* необходимо указать **L/8** для обеих сторон. Программа RFEM найдет поверхности автоматически.

Закройте все диалоговые окна с помощью клавиши [ОК] и проверьте результат в рабочем окне.

Воспользуйтесь кнопкой на панели инструментов, которая показана слева, чтобы

установить режим просмотра [Вид в изометрии] и отобразить модель в

Изменение режима проекции

графическом 3D представлении.

Ø

Чтобы настроить отображение, воспользуйтесь кнопками [Переместить, Приблизить, Повернуть] (см. "функции мыши" на странице 9). Курсор превратится в руку-указатель. Дополнительно удерживая клавишу [Ctrl], можно движением указателя вращать конструкцию.

Рис. 4.14: Модель в изометрическом режиме просмотра с навигатором и записями в таблице

Проверка данных в навигаторе и в таблицах

Все введенные объекты можно найти в дереве каталогов навигатора *Данные* и во вкладках таблицы. Записи в навигаторе можно открыть (как в Windows Explorer), нажав значок [+]. Для переключения между таблицами, щелкните отдельные вкладки таблицы.

Например, в записи навигатора *Поверхности* и в таблице 1.4 *Поверхности*, данные по обеим поверхностях введены в числовой форме (см. рисунок выше).

4.3.2 Колонны

Наиболее удобный способ создания колонн - это копирование узлов перекрытий вниз вместе с заданием отдельных параметров процесса копирования.

Выбор узла

Сначала необходимо выбрать узлы, которые вы хотели бы скопировать. Чтобы открыть соответствующий диалог,

нажмите Выбрать в меню Исправить, и потом щелкните Подробно

или воспользуйтесь кнопкой на панели инструментов, которая изображена слева.

Диалоговое окно *Подробный выбор* предустанавливает категорию *Узлы*. Так как вы хотите выбрать *Все* узлы, можно подтвердить диалоговое окно, без каких-либо изменений, нажав на кнопку [OK].

Категория	Узлы				
9злы Линии	Bce				
Поверхности	🔘 С номером:				
Сечения Шарниры на концах ст	© Узел-ориентир №:	[]	3
Эксцентриситеты стер	💿 С комментарием:	Bce		- 2	3
Стержни Ребра	💿 С опорой:	Bce		•	3
		Х [м]	Ү [м]	Z [м]	
	🔘 В пределах: от:	0.000 🗢 🕨	0.000 🔶 💽	0.000 🔷 🛐	3
	до:	0.000 🚖 🖹	0.000	0.000 🜩 🕨	3
		Загружение:			
	🔘 С узловой нагр.:	Bce		•	
	🔘 На поверхности:				3
4 <u>III</u> •	🔘 На линии:				3
Состояние					
🧿 Добавить					
Выбрать из актуальных					
Удалить из актуальных					

Рис. 4.15: Диалоговое окно Подробный выбор

Выбранные узлы теперь отображаются другим цветом. Желтый цвет предустановлен в качестве цвета выделения на черном фоне.

Копирование узлов

Воспользуйтесь кнопкой, которая изображена слева для того, чтобы открыть диалоговое окно Переместить или копировать.

Количество			
Количество копий		⇒x	
n. 1	Y		
Относительно системы координат:	ż	Array dy	
🖲 Общая СКХ,Ү,Z			
🖱 Пользовательская СК U,V,W 👥 👥	(···	dy Idz	
		Contraction of the second	
Зектор перемещения			
Зектор перемещения dx: 0.000 (*) [M]			
Зектор перемещения dx: 0.000 ф [м] dy: 0.000 ф [м] dz: 3.000 ф [м]	Прирашение нуме		
Вектор перемещения dx: 0.000 ф h [M] dy: 0.000 ф h [M] dz: 3.000 ф h [M]	Приращение нумеј Узль:	ации для	10
leктор перемещения dy: 0.000 ☆ b [м] dy: 0.000 ☆ b [м] dz: 3.000 ☆ b [м]	Приращение нумер Чэлы: Стержни:	ации для 1 Ф Инпрерывн 1 Ф Инпрерывн	10
Вектор перемещения dx: 0.000 \$ [м] dy: 0.000 \$ [м] dz: 3.000 \$ [м]	Приращение нуме Чзлы: Стержни: Линии:	нации для 1 Ф Инпрерыен 1 Ф Инпрерыен 1 Ф Инпрерыен 1 Ф Инпрерыен	+0 +0
Вектор перемещения dx: 0.000 ∲ м м dy: 0.000 ∲ м м dz: 3.000 ∲ м м	Приращение нуме Чэльт Стержни: Линии: Поверхности:	нации для 1 Ф Инпрерыен 1 Ф Инпрерыен 1 Ф Инпрерыен 1 Ф Инпрерыен 1 Ф Инпрерыен 1 Ф Инпрерыен	10 10 10

Рис. 4.16: Диалоговое окно Переместить или копировать

Измените *Количество копий* на 1: При такой настройке вместо перемещения, программа скопирует узлы. Так как высота колонны 3 м, введите величину **3.0** м для *Вектора перемещения* в *d*_z.

Теперь нажмите на кнопку [Исправить расширенные параметры], чтобы задать другие параметры.

Рис. 4.17: Диалоговое окно Подробные параметры для перемещения/поворота/зеркального изображения

В разделе диалогового окна Соедининение, выделите флажок для следующих опций:

- 🗹 Создать новые линии между выбранными узлами и их копиями
- ☑ Создать новые стержни между выбранными узлами и их копиями

Потом выберите стержень **2** из списка, чтобы определить его как *Шаблон стержня*. Таким образом, свойства тавровых балок (тип стержня, сечение, материал) будут предустановленны для новых колонн.

Закройте оба диалоговых окна, нажав кнопку [ОК].

Редактирование поверхностей

Так как вы определили шаблон стержня как *Ребро* с полезной шириной, теперь вы должны настроить тип стержня. Существует также другой способ выбора колонн.

Сначала установите отображение в направлении [-Y] с помощью кнопки изображенной слева.

Теперь воспользуемся указателем для того, чтобы выделить область <u>справа</u> <u>налево</u> поперек узлов оснований колонн. Таким образом, будут выбраны все объекты, которые полностью или частично содержатся в области, таким образом, наши колонны будут также выбраны. (Если выделить область слева направо, то будут выбраны только те объекты, которые полностью содержаться в окне).

Рис. 4.18: Выбор с помощью окна

Теперь дважды щелкните по одной из выбранных колонн. Появится диалоговое окно *Редактировать стержень*. Номера выбранных стержней показаны в поле диалогового окна *Стержень* №.

J-Y

Общие сведения	Опции	Полезные длинь	Изменить же	сткости	
Стержень №	Ли	ния №		Тип стержня	
3-9	5,	10-15	- B	🔲 Балка	
Узел №				Балка Жесткость	13
1,5; 2,9; 3,10; 4,	11; 6,12; 7	.13; 8,14		Ребро Элемент фермы Элемент фермы (только N)	
Поворот стержи	ня через			Сжатие	
Угол Вспомогат	β:	["] 📢 0.00		Потеря устойчивости Канат Канат ча блоках	
узел В плоскости	@ x-y © x-z	yipn + [1d]	•	Результ. балка Определяемые жесткости Соединение заделка-заделка	
Сечение				Соединение заделка-шарнир	
В начале ст.:	2	Прямоугольное 3	800/300 Бетон (Соединение шарнир-заделка Пружина	
В конце ст.:	Как начал	о стержня		Нулевой	
Шарнир на конц	е стержня	I			
В начале ст.:	Отсутству	ет		- 🎦	*
В конце ст.:	Отсутству	ет		- 🚰	

Рис. 4.19: Изменение типа стержня

Измените тип стержня на Балка и закройте диалоговое окно с помощью кнопки [OK].

И вновь, установите режим просмотра [Изометрия] для полного отображения модели.

4.4 Расположение опор

В модели по-прежнему отсутствуют опоры. В программе RFEM вы можете назначить опоры для узлов, линий, стержней и поверхностей.

Назначение узловых опор

Колонны опираются на подножия во всех направлениях, но без закрепления.

Узловые опоры и колонны остаются выбранными все время, пока вы не щелкнете на рабочем окне. Если это необходимо, выберите объекты ещё раз с помощью области выбора (см. Рис. 4.18).

Теперь дважды щелкните по одному из выбранных узлов основания. С помощью строки состояния в левом нижнем углу можно удостовериться, что указатель расположен на соответствующем узле.

Откроется диалоговое окно Редактировать узел.

Координаты узла				
	Опора Сетка КЭ			
Узел №				
5,9-14				
0				
Unopa			1	
Возможно				
Тип:				
] 🗋 🗹 Шарнир	- 🛅 🗃		
				X
				Z
				🕅 🔭 🔽 🚺 ⊄
2 2 000				ОК Отмена

Рис. 4.21: Диалоговое окно Редактировать узел, вкладка Опора

Во вкладке Опора, необходимо отметить флажок Возможно. С помощью этой настройки можно назначить выбранным узлам тип опоры Шарнир.

После нажатия на кнопку [ОК], в модели отобразятся символы опоры.

Изменение рабочей плоскости

Откорректируйте длину двух колонн слева на 4 м. Для этого необходимо изменить горизонтальную рабочую плоскость на вертикальную.

Чтобы установить [Рабочую плоскость YZ], нажмите на вторую из трех кнопок плоскости.

Сетка теперь отображается в плоскости левых колонн. Эта настройка позволит определить линии графически или переместить узлы в данной рабочей плоскости.

Изменение опорных узлов

В этот раз выберите узлы 9 и 5 один за другим, удерживая клавишу [Ctrl] при выборе.

Теперь необходимо переместить один из выбранных узлов на **1 м** в точку сетки ниже. Пожалуйста, проследите за тем, чтобы выбрать узел, а не стержень. В этом случае также возможно проверить номера узлов и координаты курсора в строке состояния.

Рис. 4.22: Перемещение двух выбранных опорных узлов

В качестве альтернативы, можно дважды щелкнуть по одному из узлов и перейти к правильной Z-координате в диалоговом окне *Редактировать узел*, вкладка *Координаты узла*.

4.5 Соединение стержня с шарниром и эксцентриситетом

4.5.1 Шарнир

2

Стальная балка не может переносить какие-либо изгибающие моменты на колонны из-за своего соединения. Поэтому вы должны назначить шарниры обеим сторонам стержня.

После двойного щелчка по стержню 7, откроется диалоговое окно Редактировать стержень.

В части диалогового окна *Шарнир на конце стержня*, нажмите на кнопку [Новый], чтобы задать тип разъединения для *Начала стержня* (см. Рис. 4.25).

Шарнир на кон	це стержня	
В начале ст.:	Отсутствует	- (<u>A</u>) -
В конце ст.:	Отсутствует	- 🔁 🕾

Рис. 4.23: Диалоговое окно Редактировать стержень, часть диалогового окна Шарнир на конце стержня

Появится диалоговое окно *Новый шарнир на конце стержня*, в котором можно выбрать внутренние силы, которые <u>не</u> переносятся шарниром. В нашем примере необходимо отметить флажки моментов *М*_у и *M*_z.

Шарнир на кон	ще стержня №		
1		X	
Система коорд	динат		
💿 Местные о	си стержня х,у,г		
🔘 Общие оси	X,YZ · как ножницы		Мт
🔘 Общие оси	с наклоном X',Y',Z' · как ножницы		X
Порядок:	Повернуто вокруг		Y Vy Mu
ZYX -	Z':	2	
	Y':	¥v.	
	X': + [*]	± 1	
		V Mz	
/словия задел	ки		
Шарнир	Жесткость пружины	Нелинейность	
🗖 N	CN : [kH/m]	Отсутствует	*) 🖉
🗾 Vy	Суу : [kH/м]	Отсутствует	*
🗖 Vz	Cv₂ : [kH/m]	Отсутствует	-
Шарнир			
🗾 Mt	Сма : КНм/ра	а] Отсутствует	v 🕅
📝 My	Сму : 0.000 🕀 [кНм/ра	а] Отсутствует	•
🗸 Mz	Смг : 0.000 🕀 [кНм/ра	д] Отсутствует	•
			64 (<i>f</i>)
Комментарий			
		•	

Рис. 4.24: Диалоговое окно Новый шарнир на конце стержня

Подтвердите предварительные установки и закройте диалоговое окно с помощью кнопки [OK].

В диалоговом окне *Редактировать стержень* видно, что шарнир 1 теперь назначен *Началу стержня*. Задайте такой же тип шарнира для *Конца стержня* с помощью списка (см. следующий рисунок).

Рис. 4.25: Назначение шарниров в диалоговом окне Редактировать стержень

4.5.2 Эксцентриситет стержня

Соедините стальную балку эксцентрически ниже плиты перекрытия.

Для этого, в диалоговом окне *Редактировать стержень*, перейдите на вкладку диалогового окна *Опции*. В разделе диалогового окна *Эксцентриситет стержня*, нажмите на кнопку [Новый], чтобы открыть диалоговое окно *Задать или исправить* эксцентриситет стержня.

Выберите опцию Поперечное смещение от сечения другого объекта. В нашем примере, объект - это плита перекрытия: воспользуйтесь функцией [Выбрать], чтобы определить **Поверхность 2** графически.

После этого задайте *Размещение сечения*, а также *Смещение осей*, выбрав поля, как показано на Рис. 4.26.

В разделе диалогового окна Осевое смещение соединенных стержней, выберите флажок для Начала стержня и Конца стержня, чтобы произвести смещение по обеим сторонам.

9 9

3

После подтверждения всех диалоговых окон, можно проверить результат с помощью увеличенного изображения (например, изменяя масштаб прокруткой колесика мыши, перемещая мышку при одновременно нажатом колесике, вращая мышку при одновременно нажатом колесике и правой кнопке мыши).

Рис. 4.27: Стальная балка с шарниром и эксцентриситетом

4.6 Проверка введенных данных

Проверка навигатора Данные и таблиц

Графический ввод отображается как в дереве навигатора *Данные*, так и в таблицах. Навигатор и таблицы можно отобразить или скрыть, выбрав **Навигатор** или **Таблица** в меню **Изобразить.** Вы также можете воспользоваться соответствующими кнопками на панели инструментов.

В таблицах, объекты конструкции приведены в отдельных вкладках. Графика и таблицы являются интерактивными: Чтобы найти объект в таблице, например, поверхность, выберите таблицу 1.4 *Поверхности* и выберите поверхность в рабочем окне с помощью щелчка. После этого будет выделена соответствующая строка таблицы (см. Рис. 4.14, страница 19).

Таким образом можно быстро проверить введенные числовые данные.

Сохранение данных

Итак, ввод данных в модель завершен. Чтобы сохранить рабочий файл,

выберите Сохранить в меню Файл

или воспользуйтесь кнопкой на панели инструментов, которая изображена слева.

品

5. Нагрузки

Во-первых, такие нагрузки как собственный вес, временная нагрузка или ветровая нагрузка описаны в разных загружениях. В следующем шаге совместите загружения с частичными коэффициентами надежности в соответствии с определенными правилами сочетания (см. главу 6).

5.1 Загружение 1: Собственный вес и отделка

Первое загружение содержит постоянно действующие нагрузки от собственного веса и конструкции перекрытия (см. раздел 2.3, страница 6)

Воспользуйтесь кнопкой [Новая нагрузка на поверхность], чтобы создать загружение.

Рис. 5.1: Кнопка Новая нагрузка на поверхность

Появится диалоговое окно Исправить загружения и сочетания нагрузок.

гружения Сочетания нагрузок Расчетные с	риетания	
уществующие загружения С 3Г1 Собственный вес	ЗГ№ Наименование загружения 1 Собственный вес	Решить
	Общие данные Параметры расчета	
	G Постоянная	
	Собственный вес	
	Y: 0.000 + H Z: 1.000 + H	
	Комментарий	- (6)

Рис. 5.2: Диалоговое окно Исправить загружения и сочетания нагрузок, вкладки Загружения и Общие данные

Загружение № 1 с типом воздействия *Постоянная*. Дополнительно введите *Наименование загружения* **Собственный вес**.

Собственный вес Собственный Козфонциент вдоль оси: X: 0.000 ÷ [-] Y: 0.000 ÷ [-] Z: 1.000 ÷ [-]

5.1.1 Собственный вес

Собственный вес поверхностей и стержней в направлении Z учитывается автоматически, если коэффициент Активный равен 1.000, как уже предустановленно в программе.

5.1.2 Конструкция перекрытия

Для подтверждения ввода нажмите на кнопку [OK]. Откроется диалоговое окно Задать или исправить нагрузку на поверхность.

v≃ na noseµ	KHOCTRX N≌	Тип напрузки 'Сила'
1		Распределение нагрузки 'Распределенная'
Гип нагрузки	Направление нагрузки	
💿 Сила 🗇 Температура 🕞 Удлинение	Местная, Ох на реальную плоскость: У г	
Остроительный подъем Вращательное движение		
аспределение нагрузки Распределенная Линейная Линейная по X Линейная по Y Линейная по Z	Общая, © ХР на проекцию плоскости: © ҮР 2Р	Направление напружи 'ZL'
Зеличина нагрузки	(v) v	×
Usen № p: 1 × № p: 2 ≈ 1 × № p: 3 ≈ 1 × № p:	Величина 0.75 ф/м ф/м (kH/м²] (kH/м²]	z
Комментарий	•	

Рис. 5.3: Диалоговое окно Задать или исправить нагрузку на поверхность

Конструкция перекрытия действует как тип нагрузки Сила, с распределением нагрузки Распределенная. Подтвердите данные предустановки, а также настройку *ZL* для Общая в разделе диалогового окна Направление нагрузки.

В разделе диалогового окна *Величина нагрузки*, введите величину **0.75** кН/м² (см. главу 2.3, страница 6). После этого закройте диалоговое окно с помощью кнопки [OK].

Теперь можно назначить нагрузку графически для поверхности перекрытия: Обратите внимание на появившийся маленький символ нагрузки рядом с указателем. Этот символ исчезает, как только вы переместите указатель по поверхности. Примените нагрузку, выбирая поочередно поверхности **1** и **2** (см. Рис. 5.4).

<u>x_xx</u> <u>↓</u> Вы можете скрыть и отобразить величины нагрузок с помощью кнопки на панели инструментов [Изобразить величины нагрузок].

Чтобы выйти из режима ввода, воспользуйтесь кнопкой [Esc]. Вы также можете кликнуть правой кнопкой мыши на пустом рабочем окне. Ввод данных для загружения Собственный вес и отделка завершен.

38

Рис. 5.4: Графический ввод нагрузки на перекрытие

5.2 Загружение 2: Временная нагрузка, участок 1

Из-за эффекта непрерывности разделите временную нагрузку на перекрытие на два разных загружения. Чтобы создать новое загружение,

перейдите к пункту Нагрузки в меню Вставить и выберите Новое загружение

или воспользуйтесь соответствующей кнопкой на панели инструментов (слева от списка расчетных вариантов нагрузок).

уществующие загружения	. 3Ľ №	Наименование загружения	Решить	
G 3Г1 Собственный в	sec 2	Вынужденная нагрузка	• 17	
ов 3Г2 Вынужденная	нагрузка			
	Общие данн	ные Параметры расчета		
	Тип воздейс	ствия		
	О Вынуз	О Вынужденный 👻		
	Собственны	añ sec		
	Н Активны	a		
	Казффи	шнент вдоль осн		
	X	1-1 1-1		
	Ye L	E E		
	Z	(I)		
		ий		
	Комментар			
	Комментар		 ₩ 	

Рис. 5.5: Диалоговое окно Исправить загружения и сочетания нагрузок, вкладка Загружения

Для Описания загружения введите **Вынужденную нагрузку**, или выберите запись из списка.

Тип воздействия задан автоматически как **Q**_i **Вынужденный**. Эта классификация имеет значение для частичных коэффициентов надежности и комбинаций коэффициентов для сочетания нагрузок.

В поле Комментарий можно ввести Участок 1, чтобы более подробно описать загружение.

品

После подтверждения диалогового окна задайте нагрузку на поверхность с помощью нового способа: Сначала выберите поверхность перекрытия 1 с помощью щелчка. Теперь, после того как откроется диалоговое окно с помощью кнопки [Новая нагрузка на поверхность], будет видно, что номер поверхности уже введен.

1		Распределение нагрузки 'Распределенная'
		Распределение натрузки 'Распределенная'
	Направление нагрузки	
	Местная, © x на реальную плоскость: © y г	
падъем движение 🔛 прузки	Общая, ОХL на реальную плоскость: УL © ZL	
R	Общая, © ХР на проекцию © ҮР плоскости: © ҮР	Направление напрузки 'ZL'
i	1 %	×
Beni p: p: p: p: p:	44643 1.50 ⊕ [kH/m²] ⊕ [kH/m²] ⊕ [kH/m²]	z
	патьем движение () () трузки зя зя р : () () () () () () () () () () () () () (на реаленую поскость: 2 06щая, на реаленую Общая, на реаленую Общая, на проекцию плоскость: 2 2 06щая, на проекцию плоскость: 2 2 2 2 2 2 2 2 2 2 2 2 2

Рис. 5.6: Диалоговое окно Задать или исправить нагрузку на поверхность

Временная нагрузка действует как тип нагрузки Сила, с распределением нагрузки *Распределенная*. Подтвердите данные предустановки, а также настройку ZL для *Общая* в разделе диалогового окна *Направление нагрузки*.

В части диалогового окна *Величина нагрузки*, введите величину **1.5** кН/м² (см. главу 2.3, страница 6). После этого закройте диалоговое окно с помощью кнопки [OK].

Нагрузка на поверхность отображается в левом поле перекрытия.

5.3 Загружение 3: Временная нагрузка, участок 2

Необходимо создать [Новое загружение], чтобы задать временную нагрузку на правом участке.

гружения	Сочетания нагрузок Расчетные соч	отания		
инествующ	не загружения	3F NR	Наименование загружения	Решить
3F1 3F2	Собственный вес Вынужденная нагрузка	3	Вынужденная нагрузка	▼
a) 3F3	Вынужденная нагрузка	Общие данны	а Параметры расчета	
		Тип воздейсти	sirs	
		а Вынужд	еный	•
		Собственный	Bec	
		Активный		
		Коэффици	энт вдоль осн:	
		X:		
		Ye	1 ·]	
		2:	1 I I	
		-		
		Комментарий		
		none 2		- 0
	CALLER MALLER COM			

Рис. 5.7: Диалоговое окно Исправить загружения и сочетания нагрузок, вкладка Загружения

Ещё раз введите Вынужденную нагрузку для Описания загружения. В качестве Комментария введите Участок 2, и потом закройте диалоговое окно с помощью кнопки [ОК].

5.3.1 Нагрузка на поверхность

На этот раз выберите поверхность перекрытия 2 и откройте диалоговое окно Новая нагрузка на поверхность с помощью кнопки [Новая нагрузка на поверхность].

В дополнение к поверхности 2, видно, что параметры последнего шага ввода данных уже предустановленны (тип нагрузки Сила, распределение нагрузки Распределенная, направление нагрузки Общая ZL, Величина нагрузки 1.5 кН/м²). Подтвердите диалоговое окно, ничего при этом не изменяя.

Нагрузка на поверхность отображается в правом поле перекрытия (см. Рис. 5.8).

₽8

5.3.2 Линейно-распределенная нагрузка

Легче применить линейно распределенную нагрузку к задней грани перекрытия при максимализации отображения этой поверхности, используя функцию Приблизить или колесико мыши.

С помощью кнопки на панели инструментов [Новая нагрузка на линии] слева от кнопки [Новая нагрузка на поверхность] откройте диалоговое окно Новая нагрузка по линии.

Нагрузка по линии как тип нагрузки Сила с Распределенным распределением нагрузки действует в направлении нагрузки ZL. В разделе диалога Параметры нагрузки, введите 5 кН/м (см. главу 2.3, страница 6).

Рис. 5.8: Диалоговое окно Новая нагрузка на линии

После щелчка по кнопке [ОК], щелкните по линии 8 у задней грани перекрытия (проверьте с помощью строки состояния).

Закройте режим ввода с помощью кнопки [Esc] или с помощью щелчка правой кнопки мыши по пустой рабочей области. Затем вернитесь в [Изометрия].

Æ

J.L

5.4 Загружение 4: Несовершенства

В последнем загружении определите несовершенства для колонн, которые находятся под воздействием осевых сил.

На этот раз воспользуйтесь навигатором *Данные* для создания нового загружения: Нажмите правой кнопкой мыши на запись *Нагрузки*, чтобы открыть контекстное меню, и затем выберите *Новое загружение*.

Рис. 5.9: Контекстное меню Нагрузки

Выберите Несовершенство по - У из списка Описание загружения. Тип воздействия автоматически изменится на Несовершенство.

пружения	Сочетания нагрузок Расчетные	сочетания			
уществующ	ие загружения	3F NR	Наименование загружения	Решить	
G 3F1	Собственный вес	4	Несовершенство по - Ү	• [V]	
QI 3F2	Вынужденная нагрузка				
QI 313	Вынужденная нагрузка	Общие данные	Параметры расчета		
mp sta	песовершенство по чт.	Тип воздействи	я.		
		Imp Hecosepu	иенство	•	
		Собственный в	ec		
		Активный	50°		
		Коэффициен	п вдоль осн.		
		×: [÷ F		
		¥:	· [-]		
		Z:			
			1		
		-			
		Комментарий			
	35 (A) (94) (94) (94)	¥		- 6	
the second se	22 Da 07 07				

Рис. 5.10: Диалоговое окно Редактировать загружения и сочетания нагрузок, вкладка Загружения

Закройте диалоговое окно с помощью кнопки [ОК].

Кнопка раскрытия списка нагрузок

Нажмите на кнопку на панели инструментов [Новая нагрузка на тело] для того, чтобы открыть меню со списком, в котором выберите запись *Новое несовершенство*. Откроется следующее диалоговое окно.

1 Направление	 Стержней Перечня стержней Блоков стержней 	A		/ _/_x
Направление	 Перечня стержней Блоков стержней 	A		4 ×
Направление	О Блоков стержней			
Направление	C group and a second			v i la v
	Параметры			
Местны 💿 у	Отсчет:	Относительно	Ţ	, Tv
DCH: Oz		🔘 Абсолютно		
Главные 📆 и	Havanuari	1 / 200 00 🖄 LI 📼 🕅	a	(^e ₀)
оси: 🚫 м	паклон фу			•
	Строительный подъем м	(1/ 0.00≑[•])	A	
	строительного подъема		0 -	: / Wo
		×		
		ED :	-φ	0:17
				×!/
Комментарий		1		¥→y/z _+
		•		·· / ·

Рис. 5.11: Диалоговое окно Задать или исправить несовершенство

Примените несовершенство в *Направлении* оси **у** колонны, которое представляет собой направление местной оси стержня, параллельно выравненное по общей оси Y в нашем примере.

Установите *Строительный подъем w*₀/L как **0.00** и подтвердите диалоговое окно с помощью кнопки [OK].

A

Вы можете с легкостью установить несовершенство с помощью рамки выбора. Вопервых, установите модель в более подходящую позицию: нажмите кнопку [Переместить, Приблизить, Повернуть] и наклоните модель немного назад, удерживая левую кнопку мыши и, дополнительно, удерживая клавишу [Ctrl]. Выйдите из режима изменения вида с помощью кнопки [Esc] или щелчка правой кнопкой мыши в окне без отмены функции "Выбрать стержни для несовершенств".

После этого, обведите рамку выбора справа налево. Вы должны позаботиться о том, чтобы включить все колонны с помощью рамки выбора, однако стальная балка должна находиться за пределами выбранной зоны.

Когда другой угол рамки установлен, программа RFEM присваивает несовершенства.

Выйдете из данной функции с помощью кнопки [Esc] или щелчка правой кнопкой мыши. И наконец, вернитесь к [Изометрия].

Рис. 5.13: Несовершенства, показанные в линейной модели

Изменение отображения модели

Рисунок выше показывает конструкцию как *Каркасную модель*. Вы можете установить этот параметр отображения с помощью кнопки на панели инструментов, которая показана слева. Таким образом, несовершенства больше не перекрываются отображаемыми колоннами.

17 🖘 👎 🗊 ኛ 🚧 🔧

Сплошная прозрачная модель

22

Каркасная модель

🚱 Сплошная модель

B

R

5.5 Проверка загружений

Все четыре загружения были полностью введены. Теперь рекомендуется [Сохранить] введенные данные.

Вы можете быстро проверить каждое загружение по графику: Кнопки [◀] и [▶] на панели инструментов позволяют выбрать предыдущее или последующее загружение.

льтаты И <u>н</u> струменты <u>Т</u> аблица	В <u>о</u> зможности	Дополни	ительные м	одули	Окно	Помощь	
🔲 🔲 🧕 ЗГЗ - Вынужденная на	агрузка	- 🔁 :		🔍 x.xx	64 B	ने 🛤 🗄	P 🗱 😰
- 🍫 - 🖨 🖆 - 🐉 - 🍕 🏨	🏂 🔀 🐁 -		едыдущее з	агружен	ние,]	1 7 - 3	• 🕐 •

Рис. 5.14: Просмотр загружений

Графический ввод нагрузок также отображается как в дереве навигатора *Данные*, так и в таблицах. Вы можете просмотреть данные нагрузок в таблице 3. *Нагрузки*, которые можно установить с помощью кнопки, отображенной слева.

И вновь, графика и таблицы являются интерактивными: Чтобы найти нагрузку в таблице, например, несовершентсво, установите таблицу 3.13 *Несовершенства* и, затем выберите нагрузку в рабочем окне. После этого курсор перейдет на соответствующую строку таблицы.

6. Сочетания нагрузок

В соответствии с EN 1990, вы должны объединить загружения с помощью коэффициентов. *Тип воздействия,* который установлен заранее, при создании загружения, позволяет легче генерировать сочетания (см. Рис. 5.10, стр. 35). Таким образом, вы можете контролировать частичные коэффициенты надежности и коэффициенты сочетаний в процессе создания сочетаний.

6.1 Создание сочетаний нагрузок

С помощью введенных четырех загружений создайте следующие сочетания нагрузок:

- 1.35*3F1 + 1.5*3F2 + 1.0*3F4
- Временная нагрузка на участке 1
- 1.35*3Г1 + 1.5*3Г3 + 1.0*3Г4
- Временная нагрузка на участке 2

Полная нагрузка

1.35*3F1 + 1.5*3F2 + 1.5*3F3+1.0*3F4

Выполните расчет конструкции в соответствии с анализом второго порядка.

Создание СН1

Откройте меню кнопки раскрытия списка [Исправить загужения и сочетания] и создайте [Новое сочетание нагрузок]. Вновь появится диалоговое окно *Редактировать загружения и сочетания нагрузок*.

править загружения и сочетания нагрузок							
Загружения Сочетания нагрузок Расчетные со	четания						
Существующие сочетания нагрузок	CH NE	Наименование сочетания наго	рузок				Решить
СН1 Вынужденная нагрузка в поле 1	1	• Вынужденная нагр	узка в пол	ne 1		•	V
	Общие данные Па	араметры расчета					
	Cumert publice set	moreoun	3	amureau	In a colletta	uu uarmana Ci	4
	G 3F1 Co6	ственный вес		135	G 3F1	Собственны	a) sec
	0 3F2 Bee	VX ARHHAD HACTIVAKA		1.50	01 302	Вынужаены	an Harovska
	GI 3F3 Bee	ужденная нагрузка		1.00	Imp 304	Несоверше	нотво по - У
	Imp 3F4 Hec	овершенство по -Y		The property is a		a handra da da da da da	
		N CATTRAN STRATISTICS VI.					
			>				
			(mm)				
			22				
			40				
	P Bce (4)	- 84 8ta	1	1.00 -	1		
	Комментарий						
Bce (1) •	0					•	
2 🔿 🖫							ОК Отмен

Рис. 6.1: Диалоговое окно *Редактировать загружения и сочетания нагрузок*, вкладка Сочетания нагрузок

Введите **Вынужденную нагрузку на участке 1** для Существующего сочетания нагрузок.

 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №

>

Внизу, в списке *Существующие загружения* щелкните на **ЗГ1**. После этого, с помощью кнопки [▶] переместите загружение в список *Загружения в сочетании* нагрузок *СН1* справа. Такие же действия выполните для **ЗГ2** и **ЗГ4**.

Во вкладке Параметры расчета, проконтролируйте, чтобы Метод расчета был установлен как Теория второго порядка (см. следующий рисунок).

гружения Сочетания нагрузок Ра	четные сочетания				
уществующие сочетания нагрузок	CH № Наим	енование сочетания нагрузок		Решить	
E CH1 Вынужденная нагрузка	s none 1	 Вынужденная нагрузка в по 	one 1 🔹		
	Общие данные Парами	етры расчета			
	Метод расчета	and a final south stoop" Ma	Опции		
	🔘 Геометрически лине	ный статический расчет	📝 Учет разгружающего эффек	ta	
	💿 Теория 2-го порядка	(P-Deta)	от сил растяжения стержней		
	Расчет по большим д Посткритический рас	Расчет по большим деформациям Из Посткритический расчет		Изменить дагрузку коэффициентом: 🔄 🔅 [·] Делить результаты на коэффициент нагрузки	
	Метод решения системы	#)	Отнести внутренние силы к автографиранной констикстика але:		
	Ноличейные алгебрани по Ныотону-Раесону Расчет по Ныотону-Раесону по Пикатону-Раесону По Ньютону-Раесону По Ньютону-Раесону Динамическая релак	ские уравнения: афсону и по Пикарду с пост. матрицей жесткости , модификация сация	 	ематический механизм скую жесткость в первой кство нного	
			☑ Делить жескости (Е, G) на ч из табл. 1.3	астичный коэффициент үм	
Bce (1)	• 🗙				

Рис. 6.2: Вкладка Параметры расчета

После щелчка по кнопке [OK] все нагрузки, содержащиеся в сочетании нагрузок, будут отображены на модели.

6 Сочетания нагрузок

Рис. 6.3: Нагрузки сочетания нагрузок СН1

Кроме того, вы можете использовать вкладку Параметры расчета для проверки спецификаций, применяемых программой RFEM для расчетов различных сочетаний нагрузок.

Создание СН2

Создайте второе сочетание нагрузок таким же образом: Создайте [Новое сочетание нагрузок], но на этот раз введите **Вынужденную нагрузку на участке 2** для Существующего сочетания нагрузок.

Загружения, которые относятся к данному сочетанию нагрузок, следующие: ЗГ1, ЗГ3 и ЗГ4. И вновь воспользуемся [▶], чтобы их выбрать.

Создание СН3

Для создания последнего сочетания нагрузок, сделайте это с помощью другого способа создания: щелкните правой кнопкой мыши на запись в навигаторе *Сочетания нагрузок*, и в контекстном меню выберите пункт *Новое сочетание нагрузок*.

6 Сочетания нагрузок

Рис. 6.4: Создание сочетаний с помощью контекстного меню навигатора

Введите **Нагрузка на фундамет** для *Существующего сочетания нагрузок*. С помощью кнопки [Добавить все загружения] вы можете переместить все четыре загружения одновременно в список справа.

Рис. 6.5: Диалоговое окно Исправить загружения и сочетания нагрузок, вкладка Сочетания нагрузок

Так как загружениям ЗГ2 и ЗГ3 присвоен тип воздействия *Временная*, для них применяется частичный коэффициент надежности 1.5. В случае различных категорий нагрузок, одно загружение будет ведущим, а другой вариант будет вторичной нагрузкой с приведенным коэффициентом.

🤧 - 🥞 🏂 🎘 🔀 🥵 - 🤅 🧙 🔍 🏹 🗊 💱 Загружения и сочетания нагрузок

Новое загружение...

- Новое сочетание нагрузок...
- 🐉 Новое расчетное сочетание...

6.2 Создание расчетных сочетаний

На основании результатов трех сочетаний нагрузок создайте пакет, в котором будут положительные и отрицательные экстремальные величины.

В меню кнопки раскрытия списка [Новое сочетание нагрузок], выберите запись Новое расчетное сочетание. Появится знакомое вам диалоговое окно Редактировать загружения и сочетания нагрузок.

Рис. 6.6: Диалоговое окно Редактировать загружения и сочетания нагрузок, вкладка Расчетные сочетания

Выберите **Расчетное сочетание** из списка Существующие расчетные сочетания.

Для отображения сочетаний нагрузок, в разделе диалога Существующие нагрузки, выберите СН Сочетания нагрузок из списка, приведенного под таблицей нагрузок слева. Потом выберите все три сочетания нагрузок с помощью щелчка по кнопке [Изобразить все нагрузки перечня].

Поле выбора под таблицей нагрузок справа показывает коэффициент сочетания, который предустановлен на 1,00. Настройки соответствуют вашему намерению определить крайние значения для этого сочетания нагрузок. Измените правило комбинирования на **Постоянная**, таким образом, что программа RFEM всегда будет учитывать, по крайней мере, одно из воздействий.

Воспользуйтесь кнопкой [Добавить выбранные с 'или'] чтобы переместить три сочетания нагрузок в список справа. Величина 1 под последней колонкой говорит нам о том, что все записи относятся к одной и той же группе: Они будут рассматриваться не в качестве дополнительных, а в качестве альтернативных воздействий.

Теперь критерий комбинирования задан полностью. Нажмите [OK] и сохраните введенные данные с помощью кнопки [Сохранить].

RFEM Вводный пример $\ensuremath{\mathbb{C}}$ 2012 Dlubal Software GmbH

60

7. Расчет

7.1 Проверка введенных данных

Перед тем как выполнить расчет конструкции, необходимо, чтобы программа RFEM проверила введенные данные. Чтобы открыть соответствующе окно диалога,

выберите Проверку правильности в меню Инструменты.

Откроется диалоговое окно Проверка правильности, в котором вы можете указать следующие настройки.

Проверка правильности	×
Проверка	Тип проверки
📝 Данные о модели	🔘 Нормальный
📝 Данные по нагрузкам	С предупреждениями
Какие заголжения	🔘 Нет, только статистика
Актуальное 3Г	Опция
O Bce	🔽 Создать сетку КЭ
	Определить противоречия в телах
2	ОК Отмена

Рис. 7.1: Диалоговое окно Проверка правильности

Если после нажатия кнопки [OK] ошибки не будут обнаружены - появится следующее сообщение. Дополнительно отобразится краткий обзор конструктивных данных и данных о нагрузке.

осе дан Ошибок	ные были проверен : не найдено.	ы.				
Инфо	Данные о модели	Данные по	нагрузкам			
Разме	ры конструкции		Масса конс	трукции		
Δх	10.300 [M]		Поверхно	31000.0	[kr]	
Δγ	8.300 [M]		Тела:	0.0	[kr]	
Δz:	4.000 [M]		Стержней	6897.2	[kr]	
			Всего:	37897.2	[kr]	

Рис. 7.2: Результат проверки достоверности

Для того чтобы найти больше инструментов для проверки введенных данных выберите

Проверка модели в меню Инструменты.

7.2 Создание сетки КЭ

Так как вы отметили опцию *Создать сетку КЭ* в диалоговом окне *Проверка* правильности (см. Рис. 7.1), вы автоматически создали сетку со стандартным размером сетки 50 см. (Вы можете модифицировать предварительно установленный размер сетки, выбрав *Параметры сетки КЭ* в меню *Расчет*)

Рис. 7.3: Модель с созданной сеткой КЭ

7.3 Расчет конструкции

Для начала расчета

выберите Рассчитать все в меню Расчет

или воспользуйтесь кнопкой на панели инструментов, которая изображена слева.

Рис. 7.4: Процесс расчета

8. Результаты

8.1 Графические результаты

Как только расчет окончен, программа RFEM отображает деформации текущего загружения. Последней установленной нагрузкой была PC1, так что теперь видны максимальные и минимальные результаты этого расчетного сочетания.

Рис. 8.1: Диаграмма максимальных и минимальных деформаций для расчетного сочетания РС1

Выбор загружений и сочетаний нагрузок

Вы можете использовать кнопки на панели инструментов [◀] и [▶] (справа от перечня расчетных вариантов нагрузок) для переключения между результатами загружений, сочетаний нагрузок и расчетных сочетаний. Вы уже знакомы с этими кнопками по проверке загружений. Выбрать нагрузки можно также из перечня.

И <u>н</u> ст	рументы	<u>Т</u> аблица	В <u>о</u> зможности	Д	ополни	тельн	ные мод	ули	<u>O</u> #	но
<u>•</u>	PC1 - Pac 3F1 - Cofe	четное соч ственный ве	етание Ю	- 23	< >	<u>)</u> () ()	¥** 🔎		ه ت	s β£ 177
6	3Г2 - Вын 3Г3 - Вын 3Г4 - Несі СН1 - Вын СН2 - Вын СН2 - Вын СН3 - Наг РС1 - Расі	ужденная н ужденная н овершенств ужденная н ужденная н рузки на фу четное соче	агрузка агрузка о по -Y агрузка в поле 1 агрузка в поле 2 ндамент тание					ŪA.	10	<u>V</u> Z

Рис. 8.2: Перечень загружений на панели инструментов

Выбор результатов в навигаторе

Появился новый навигатор, который управляет всеми типами результатов для графического отображения. Вы можете открыть навигатор *Результаты,* если отображение результатов активировано. Вы можете включить и выключить

< >

17

0

отображение результатов в навигаторе *Изобразить*, однако вы также можете использовать кнопку на панели инструментов [Изобразить результаты], которая изображена слева.

Флажки, предшествующие отдельным категориям результатов (например, *Общие деформации*, *Стержни*, *Поверхности*, *Опорные реакции*) определяют какие деформации или внутренние силы будут показаны. Перед записями, содержащимися в категориях, находятся ещё больше флажков, с помощью которых вы можете установить тип результатов, которые будут отображаться.

Наконец вы можете просмотреть отдельные загружения и сочетания нагрузок. Разные категории результатов позволяют отобразить деформации, внутренние силы у стержней и поверхностей, сжимающие или опорные силы.

Рис. 8.3: Настройки внутренних сил у стержней и поверхностей в навигаторе Результаты

На рисунке выше видны внутренние силы стержня *М_y* и внутренние силы поверхности *m_y*, рассчитанные для СН1. Чтобы отобразить силы, рекомендуется использовать каркасную модель. Вы можете установить этот параметр отображения с помощью кнопки, которая показана слева.

Отображение величин

Цветовая гамма на панели управления показывает цветовую шкалу. Вы можете отключить величины результатов, выбрав опцию **Величины на поверхностях** в навигаторе *Результаты*. Для отображения всех величин узлов сетки КЭ или узлов сетки, дополнительно отключите опцию Экстремальные величины.

		Tunc/ib
Навигатор проектов - Результаты ×	-63.9-15.511.37 20.76 26.11 20.16 27.24 23.42 16.52 6.75 -4.70-2	Главные внутренние силы т. В Ни/мі
в-П_І- Стержни в-♥ Ф Поверхности	-7.310.41 12:8120.71 24:85 26:40 25:27 21:65 15:63 6:39 -6.00 -2	28.16
⊕-П Критерий ⊕- ↑ Опорные реакции	0.99 4.76 12 26 18.07 22.98 24.54 23.55 20.05 14.03 5.60 -5.34-1	- 7,11 -3,42 -13,94
	0103 5570 12154 10115 2150 22103 22143 15103 15110 5124 -4171 -1	-24.47
- • • • • • • • • • • • • • • • • • • •	0.69 6 17 12.56 17.72 21.23 22.56 21.60 18.24 12.61 4.90 -4.32 -1	- 45.52
	0.43 6.86 12.51 17.66 20.95 22.27 21.27 17.87 12.27 4.57 -4.50 -1	-77.10
 В точках решетки и в точках, созданных пользователем. На решетке поверхности 		Макс.: 28.16 Мин.:
В точках, заданных вручную ОЗВ в точках сети КЗ В точках сети КЗ		PIPE. OLUL
— 30 Нумерация — 30 Прозрачно		
	-61.2.+14.0(11.76 20.90 26.03 27.79 26.43 22.17 14.57 3.96 -9.95 -3	٩
😡 Данные 📰 Изобразить 🔏 Виды 🗢 Результаты		

Рис. 8.4: Моменты в точках решетки m_x плиты перекрытия в проекции Z (CH1)

8.2 Таблицы результатов

Вы также можете оценить результаты в таблицах.

Таблицы результатов отображаются автоматически после окончания расчета конструкции. Также как в случае числового ввода, результаты также отражаются в различных таблицах. Таблица 4.0 *Всего* показывает краткое описание процесса вычисления, которое упорядочено по загружениям и сочетаниям нагрузок.

12 A	В	C	D
Таблица 4. Результаты е	Величина	Ед. изм.	Комментарий
СН1 - Вынужденная нагрузка в поле 1	9		
Сумма нагрузок по Х	0.00	kH	
Сумма опорных реакций по Х	0.00	kH	
Сумма нагрузок по Y	0.00	kH	
Сумма опорных реакций по Ү	0.00	kH	
 Сумма нагрузок по Z 	641.89	kH	
Сумма опорных реакций по Z	641.89	kH	Отклонение: 0.00 %
 Максимальное перемещение вдоль X 	0.7	MM	Стержень № 6, х: 0.900 м
Максимальное перемещение вдоль Ү	-1.0	мм	Стержень № 3, х: 1.600 м
Максимальное перемещение вдоль Z	5.0	MM	Узел КЭ № 61 (Х: 2.500, Ү: 2.500, Ζ: 0.000 м
Максимальное векторное перемещение	5.0	мм	Узел КЭ № 61 (Х: 2.500, Ү: 2.500, Ζ: 0.000 м
Максимальный поворот вокруг оси Х	-1.6	мрад	Узел КЭ № 20 (Х: 0.000, Ү: 4.500, Ζ: 0.000 м
Максимальный поворот вокруг оси Ү	-2.1	мрад	Узел КЭ № 22 (Х: 0.500, Ү: 0.000, Ζ: 0.000 м
Максимальный поворот вокруг оси Z	0.1	мрад	Стержень № 5, х: 0.000 м
Метод расчета	2-го порядка		Теория 2-го порядка (нелинейный расчет)
Внутренние силы, отнесенные к деформированно	2		N, Vy, Vz, My, Mz, MT
Учет разгружающего эффекта сил растяжения ст	2	-	
Результаты разделить на коэфф. СН			
Редукция жесткости при помощи коэффициента	2		
Кол-во увеличений нагрузки	1		
Кол-во итераций	3		

Рис. 8.5: Таблица 4.0 Всего

Чтобы выбрать другие таблицы, перейдите на них по вкладкам. Для того чтобы найти в таблице определенный результат, например, внутренние силы поверхности перекрытия 1,выберите таблицу 4.14 *Поверхности - основные внутренние силы*. После этого, выберите поверхность в диаграмме (прозрачное отображение модели позволяет сделать это легче), и, как результат, программа RFEM перейдет к основным внутренним силам поверхности в таблице. Текущая точка сетки, то есть положение указателя в строке таблицы, обозначена с помощью маркировки стрелки на диаграмме.

Рис. 8.6: Внутренние силы поверхности в таблице 4.14 и маркер текущей точки сетки в модели

4 0

В качестве функции просмотра, на главной панели инструментов можно использовать кнопки [◀] и [▶] для выбора в таблице загружения. Также вы можете использовать список в таблице на панели инструментов для установки отдельного загружения.

8.3 Фильтр результатов

Программа RFEM предлагает различные способы и инструменты, с помощью которых вы можете представить и оценить результаты в четко структурированном отчете. Вы также можете использовать данные инструменты на нашем примере.

8.3.1 Видимости

•

ſ₽

Частичное изображение и фрагменты могут быть использованы как так называемые *Видимости* для оценки результатов.

Отображение результатов для бетонных колонн

Щелкните по вкладке *Виды* в навигаторе. Выберите следующие записи, перечисленные под *Созданными* данными:

- Стержни, упорядоченные по типам:
 - Стержни, упорядоченные по сечению: 2 Прямоугольное 300/300

Бапка

Дополнительно создайте пересечение обоих вариантов с помощью кнопки [Показать пересечение].

Рис. 8.7: Моменты М_у бетонных колонн в увеличенном представлении

На дисплее отображаются бетонные колонны вместе с результатами. Оставшаяся модель отображается только схематически и без результатов.

Изменение коэффициента масштабирования

Для того, чтобы проверить диаграмму внутренних сил на представленной модели, необходимо изменять масштаб отображение данных в контрольной вкладке панели. Измените коэффициент для *Эпюры-стержни* на **2** (см. рисунок выше).

Отображение результатов у плиты перекрытия

Таким же образом вы сможете отфильтровать результаты поверхности в навигаторе Виды. Необходимо отключить опцию Стержни по типам и Стержни по сечениям и отметить Поверхности по толщинам, в которой необходимо выбрать запись 200 мм.

Рис. 8.8: Деформации перекрытия

Как уже было описано, вы можете изменить отображение типа результатов в навигаторе *Результаты* (см. Рис. 8.3, страница 46). На рисунке выше показано распределение поперечных сил v_v.

8.3.2 Результаты по объектам

Другой возможностью фильтрации результатов является использование вкладки фильтра на панели управления, в которой вы можете указать номера отдельных стержней или поверхностей для отображения результатов только по ним. В отличие от функции видимости, модель будет полностью показана в графике.

Во-первых, отключите опцию Пользовательская/созданная в навигаторе Виды.

Рис. 8.9: Восстановление общего вида в навигаторе Виды

Одним щелчком выберите поверхность 1. Затем, на панели, перейдите на вкладку фильтра и убедитесь, что поле выбора *Поверхности* активировано.

Щелкните по кнопке [Импорт из выбранного] и, в результате, номер выбранной поверхности будет введен в поле ввода выше. Теперь график показывает только результаты левой поверхности.

Рис. 8.10: Диаграмма поперечных сил левой поверхности

Вы можете восстановить общее отображение результатов, используя опцию панели *Все*.

N

1

Контекстное меню Стержень

8.4 Отображение диаграммы результатов

Вы можете оценить результаты также на диаграмме, которая доступна для линий, стержней, линейных опор и сечений. Теперь воспользуйтесь этой функцией для просмотра диаграммы результатов тавровой балки.

Кликнете правой кнопкой мыши по стержню 2 (если у вас возникли проблемы, вы можете отключить результаты поверхности) и выберите опцию Диаграммы результатов.

Откроется новое окно, отображающее диаграммы результатов ребра стержня.

Рис. 8.11: Отображение диаграмм результатов балки перекрытия

P

В навигаторе выделите флажки общих деформаций *и* и внутренних сил *M_y* и *V-I*. Последняя опция представляет продольную силу сдвига между поверхностью и стержнем. Эти силы отображаются, когда кнопка [Результаты с компонентами ребер] на панели инструментов является активной. Когда вы нажимаете на кнопку, чтобы ее включить и выключить, вы можете четко различить разницу между исключительно внутренними силами стержня и внутренними силами ребра с объединенными компонентами поверхности.

Для настройки размера отображаемой диаграммы результатов используйте кнопки [+] и [-].

Кнопки [◀] и [▶] для выбора расчетного варианта нагрузки доступны также в окне диаграммы результатов. Но вы также можете воспользоваться перечнем для

< ⊳

X

установки результатов расчетного варианта нагрузки.

Выйдите из функции Диаграммы результатов, закрыв окно.

9. Документация

9.1 Создание протокола результатов

Не рекомендуется отправлять сложный протокол результатов вычислений FE непосредственно на печать. Поэтому программа RFEM создает сначала предварительный просмотр перед печатью, который называется "протокол результатов" и содержит исходные данные и результаты. Воспользуйтесь предварительным просмотром для того, чтобы выбрать данные, которые вы потом хотите включить в итоговый протокол результатов. Кроме того, вы можете добавить графики, описания или отсканированные документы.

Чтобы открыть протокол результатов,

выберите Открыть протокол результатов в меню Файл

или воспользуйтесь кнопкой, изображенной слева. Появится диалоговое окно, в котором вы можете указать *Шаблон* в качестве образца для нового протокола результатов.

N≌	Наименование
1	Исходные данные и краткие результаты
Шаблон пр	оотокола результатов
1 - Movoa	
1 - Исход	ные данные и краткие результаты 🔹 👻 🔤

Рис. 9.1: Диалоговое окно Новый протокол результатов

Подтвердите использование шаблона 1 - *Исходные данные и краткие результаты* и создайте предварительный просмотр данных, которые будут отправлены на печать с помощью кнопки [OK].

Рис. 9.2: Предварительный просмотр перед печатью протокола результатов

9.2 Настройка протокола результатов

В протоколе результатов содержится навигатор, в котором перечислены отдельные главы. С помощью щелчка правой кнопкой мыши по записи навигатора вы можете просмотреть его содержимое в окне справа.

Предварительно установленное содержание можно детализировать. Теперь настройте выходные данные внутренних сил стержня: В главе *Результаты – Расчетные сочетания*, щелкните правой кнопкой мыши на *Стержни – внутренние силы*, и потом щелкните на *Выбор*.

Рис. 9.3: Контекстное меню Стержни - внутренние силы

Появится диалоговое окно, в котором перечислены подробные опции выбора для результатов РС стержней.

амма / Модули	Общий выбор Данные о мор	ели Нагрузки Результа	аты ЗГ/СН Результаты RC	
8	Изобразить сочетания нагру	зок - таблицы		
	 Выбранные 			
	Изобразить таблицы		W	
	Изобра Табли	ица Все	Выбор номеров (напр. '1-4,8')	-
	4.1 Узлы - опорные р	реакции 🗹	Bce	
	4.2 Узлы - деформац	NN 🛛	Bce	
	4.3 Линии - опорные	реакции 🗹	Boe	
	4.4 Стержни - деформ	мации 🗹	Bce	
	4.5 Стержни - общие	деформации 🔍	Bce	
	4.6 Стержни - внутре	нние силы 🛄 🗹	Bce	
	4.7 Стержни - контак	тные силы)	Bce	
	4.8 Стержни - коэфф	ициенты для потер	Bce	
Вел УЭкс	ичны деления 🔛 ү	fy		
разить			Отмена	_
тульный лист 💽 держание нФо рисунки	4.25 новерхности - о	сноеные деформа 💟 И:	осе зобразить соответствующие загружени	я
иазить пульный лист 💽 держание кфо рисунки	4.25 Поверхности - о	ОК сновные деформа I I I V И:	Отмена Все зобразить соответствующие загружен	IN:

Рис. 9.4: Сокращение отображения выходных данных по внутренним силам с помощью Выбора протокола результатов

....

1

Установите указатель в ячейку таблицы 4.6 Стержни - внутренние силы. Станет активной кнопка [...], которая открывает диалоговое окно Подробности - внутренние силы по стержням. Теперь сократите отображение вывода данных Экстремальными величинами внутренних сил стержня N, V_z и M_y.

После подтверждения диалогового окна видно, что таблица внутренних сил была обновлена в протоколе результатов. Вы можете настроить оставшиеся главы для печати тем же самым способом.

Чтобы изменить расположение главы в протоколе результатов, переместите его на новое место с помощью функции перетаскивания. Если вы хотите удалить главу, воспользуйтесь контекстным меню (см. Рис. 9.3) или кнопкой [Del] на клавиатуре.

9.3 Вставка графических объектов в протокол результатов

Часто для иллюстрации документов графические объекты интегрируют в протокол результатов.

Печать графики деформаций

Сверните протокол результатов с помощью кнопки [_] и вернитесь в рабочее окно. Протокол результатов теперь отобразиться в виде отдельного приложения на панели задач.

В рабочем окне установите *Деформации* **СН1 - Вынужденная нагрузка на участке 1** и поместите график в необходимое место.

Чтобы отобразить деформации более четко, как Каркасную модель, установите соответствующую опцию отображения.

Если это ещё не сделано, измените отображение на *Все* поверхности во вкладке на панели с фильтром (см. Рис. 8.10, страница 51).

D

Теперь переместите это графическое изображение в протокол результатов.

Выберите Печатать графику в меню Файл

или воспользуйтесь изображенной слева кнопкой на панели инструментов.

Установите следующие параметры печати в диалоговом окне *Печать графики*. Не обязательно изменять настройки, которые установлены по умолчанию во вкладках *Опции* и *Цветовая гамма*.

Общие данные Опции Цветовая гамма		
Изображение Мапрямую на печать В протокоп результатое: В буеер	Распечатать окно Только актуальное Подробнее Общая распечатка	Размер изображения Как на экране Содерженое окна В масштабе 1: 100 •
Размер окна изображения и поворот И в всю ширину страницы В васота: 49 (с) [Г страницы] Поворот: 0 (с) [Г]	Опции Изобразить результаты хразрезое в эпере резу Закрыть изображение (для выбрањох пататов Без обновлення)
Заголовок изображения Деформации и, СН1: Вынужденная нагрузка	в поле 1, Изометрия	

Рис. 9.6: Диалоговое окно Печать графики

Нажмите на [OK], чтобы распечатать график деформаций в протоколе результатов. Графика появляется в конце главы *Результаты - загружения, сочетания нагрузок* (если протокол результатов не появится автоматически, разверните его с панели задач).

Рис. 9.7: Графика деформаций в протоколе результатов

Печать протокола результатов

Когда протокол результатов полностью подготовлен, отправьте его на печать с помощью кнопки [Печать].

Виртуальный драйвер PDF интегрирован в программу RFEM и позволяет сохранять данные отчета в виде PDF файла. Чтобы активировать функцию,

выберите Экспорт в PDF в меню Файл.

В диалоговом окне Windows *Сохранить как*, введите имя файла и путь для сохранения файла.

После того как вы нажмете на кнопку [Сохранить], будет создан PDF файл с закладками, которые облегчают навигацию по цифровому документу.

Рис. 9.8: Протокол результатов в виде PDF файла с закладками

10. Заключение

Сейчас вы подошли к концу вводного примера. Мы надеемся, что этот краткий вводный курс поможет вам начать работу с программой RFEM и подтолкнет Вас к исследованию новых функций программы. Вы найдете подробное описание программы в руководстве программы RFEM, которое можете скачать на нашем сайте www.dlubal.ru/skachat-instrukcii.aspx. На странице загрузки, вы также найдете тренировочный пример, описывающий более другие функции программы.

С помощью меню **Помощь** или клавиши [F1] можно открыть интерактивную справочную систему программы, где Вы можете искать специальные термины, как в руководстве. Справочная система основана на руководстве по программе RFEM.

Наконец, если у вас есть какие-либо вопросы, вы можете воспользоваться нашей горячей линии с помощью факса или электронной почты или просмотреть часто задаваемые вопросы на странице www.dlubal.ru.

Примечание: Этот пример может быть выполнен в демо-версиях дополнительных модулей, например, для расчетов стальных и железобетонных конструкций (RF-STEEL Members, RF-CONCRETE Surfaces/Members, RF-STABILITY и др.). Для того чтобы соответствовать ограничениям демо-версий, мы рекомендуем заменять объекты: Например, в программе RF-STEEL EC3, вы можете заменить балку на сечение IPE 300. Таким образом, у вас будет возможность выполнить расчет и получить представление о функциональных возможностях дополнительных модулей. Затем, вы можете оценить результаты расчета в рабочем окне программы RFEM.